Database Design Process

e there are six stages in the design of a database:
1. requirement analysis

conceptual database design

choice of the DBMS

data model mapping

physical design

o ok Wb

Implementation

e not necessarily strictly sequential

— feedback loops exist, 1.e. may need to revisit earlier stages during a
later stage



UepusdepulSNGd | ol
"
mu 1
. 1
g 3!
1
E =
5 J 3!
: 8
O =
1
I‘—’ 1
1
1
1

14199ds sgINg

Physical Design




1. Requirement Collection and Analysis

e Purpose: to document the data requirements of the users
— functional reguirements are the operations that will be applied to the
database, including queries and update

e the specification will then be used as the basis for the design of the
database
e typical activities:
— Identification of application areas and user groups

— analysis of existing documentation of application areas, e.g. policy
documents, forms, reports, organisation charts

— analysis of current operating environments and the planned use of the
Information, e.g. information flow, types of transactions, frequency of
transaction types

— responses to user questionnaires are analysed



... In summary:

e start from a description of the requirements which is:
— poorly structured,
— heterogeneous
— Informal
e and use a technique to transform that into a specification of the database
requirements which is:
— formal
— homogeneous
— consistent

— complete



2. Conceptual Design

e two parallel activities

1. schema design

— examines the data requirements of the database resulting from the
analysis (phase 1) and produces a conceptual schema in a
DBMS-independent high level data model

2. transaction design

— examines the database applications whose requirements were
analysed in phase 1 and produces high level specifications for these
transactions



2.1. Conceptual Schema Design

e Purpose: to produce a conceptual schema of the database

— expressed using concepts of the high level data model

« not including implementational details (has to be understood by
non-technical users)

x but detailed in terms of the “objects” of the domain the database
will represent

e Independent of the DBMS to be used (no relational DB-oriented notions!)
e cannot be used directly to implement the database

e design is made in terms of a semantic or conceptual data model



e the goal is to achieve understanding of database structure, semantics,
Interrelationships and constraints
e need to be expressed in a “language” which offers:

— expressiveness: able to distinguish between different types of data,
relationships and constraints

— simplicity: easy for non-specialist users to understand and use
concepts

— minimality: small number of basic concepts that are distinct and do
not overlap

— diagrammatic representation: for ease of presentation; it should
therefore be easy to interpret

— formality: must represent a formal, unambiguous specification of the
data

e some of these requirements sometimes conflict

e most popular data model used is the Entity-Relationship (ER) model



2.2. Transaction Design
e Purpose: to produce a design of the transactions, that will run on the
database
1. retrieval: retrieve data for display or as part of a report
2. update: enter new data or amend existing data

3. mixed: more complex applications may do both retrieval and update
e Why?

— need to be sure to include in the conceptual schema all information
required by transactions

— relative importance and frequency of use of transactions will influence
physical database design

e ... the software needs to be designed as well as the data!



3. Choosing a DBMS
e Purpose: establish which is the best framework for implementing the
produced schema:
— type of DBMS (relational, network, deductive, ObjectOriented, ...)
— user and programmer interfaces
— types of query languages
e choice made on the basis of technical factors

— the DBMS has to support the required tasks

e 0of economic factors
— software acquisition/maintenance, hardware acquisition,
creation/conversion, training of staff
e and of organisational factors:

— platforms supported, availability of vendor services



4. Logical Design

e Purpose: to transform the generic, DBMS independent conceptual
schema in the data model of the chosen DBMS (data model mapping)

e two stages:

1. system independent mapping: no consideration of any specific
characteristics that may apply to the specific DBMS package

2. tailoring to DBMS: different DBMSs may implement the same data
model in slightly different ways
e result is a set of DDL statements in the language of the chosen DBMS

— some CASE tools generate DDL statements from a conceptual design



5. Physical Design

e Purpose: to choose the specific storage structures and access paths for the
database files

— attention to performances

e some relevant criteria:

— response time: may want to minimise database access time for data
items referenced by frequently used transactions

— gpace utilisation: less frequently used data and queries may be
archived

— transaction throughput: average number of transactions that can be
processed per minute



6. Implementation
e Purpose: to create the database
e compile and execute DDL statements

e populate the database

— manually/automatically (may need to convert data from a previous
format)

e Implement application programs (transactions)

— programs are written with embedded DML statements

e operational phase may begin



Entity-Relationship Model
e model to express the conceptual schema of the database

e originally proposed in 1976 by Peter Chen on the ACM Transactions on
Database Systems journal

— proposed as a means to unify the network and relational DB models

e many theoretical extensions and practical applications
— Enhanced Entity Relationship (EER) Model

e used routinely for system analysis and design
— simple enough to learn and understand the basic concepts
— powerful enough to be used in the development of complex
applications

e conceptual designs using the ER model are called ER schemas



ER Model

e The ER model describes data in terms of three primitive notions:
1. entities
2. attributes

3. relationships

e an entity is a “thing”, which can be distinctly identified
— e.g. a physical thing: a person, a car, a wire

— e.g. an abstract thing: a university course, an event, a job

e an attribute is a property of an entity

— e.g. a person has an age, a car has a colour

e a relationship is an association among entities

— e.g. “aperson owns acar” is an association between the entities
person and car



Entities
e Entities are the “objects” the database has to store information about

e need to distinguish between
— entities the database contains information about currently
— world of possible entities the database might contain information
about
e the conceptual schema has to capture the changing nature of data

— need to make decisions based on the world of possible entities, e.g.
the entity class or type

— the entity class is an abstract description of some set of objects

— data to be actually stored form instances of such abstract description



Attributes

e all instances of an entity class share some common properties named
attributes of the entity class
— e.g. attributes of the “employee” class might include name, age,

address, salary etc.

e the ER model explicitly classifies attributes according to three criteria:
1. complexity
2. cardinality

3. primitiveness



e composite vs simple (atomic)
— composite attributes have an overall significance (e.g. an address) but can be subdivided
Into more basic attributes with independent meaning (city, postal code etc.)

— simple attributes are indivisible (e.g. age)

e single-valued vs multi-valued

— most attributes can have only one single value for a particular istance (e.g. a person can
only have one date of birth)

— some attributes can have one or more values for the same instance (e.g. a car model’s
colours, a person’s names)

e primitivevs derived
— some attributes can be derived from other attributes of the same entity, e.g. age
(derived) from birth date (primitive)

— or can be derived from properties of other entities (e.g. number of lecturers of a
department)



Key Attributes

an important feature of an entity type is the key or uniqueness constraint
on attributes

an entity type might have an attribute whose values are distinct for each
individual entry

such attribute is called key attribute and its value can be used to identify
each entity uniquely

sometimes, several attributes together can form a key, meaning that the
combination of them must be distinct for each individual entity

some entity types have more than one key attribute, for example both
National Insurance Number and Staff Number are valid keys for the entity
type “lecturer”



Relationships
e a relationship type defines an association among entity types
e a relationship has a degree that is the number of participating entity types,
for example:
— binary relationships (degree two): e.g. a person owns a car
— ternary relationships (degree three): e.g. a lecturer teaches a course to

a student

e relationship types can also have attributes (e.g. StartDate attribute on a
supervises relationship)



e participating entities might have a role name in the relationship

— usually the entity type name (e.g. in a ternary teaches relationships,
roles are lecturer, course and student)

— may be needed when entities are related by more than relationship
(e.g. in an additional relationship supervises, a lecturer has role
supervisor of a student having role supervisee)

— needed also in recursive relationships (e.g. a student may have role
demonstrator in the relationship demonstrate for with other students)



Structural Constraints on Relationships

e structural constraints limit the possible combinations of entities that can
participate in a relationship instance:

— cardinality ratio specifies the number of relationship instances that an
entity can participate in (one-to-one, one-to-many, many-to-many)

— participation constraint specifies whether the existence of an entity
depends on it being in the relationship:

x a total participation constraint, or existence dependency, specifies that an entity can
only exist if it participates in the specified relationship (e.g. every lecturer must work
in a specified department)

* partial participation constraint specifies there may exist an entity which does not
participate in the relationship (e.g. not all lecturers supervise students)



Weak Entity Types

e these are entity types which cannot exist in isolation
e instances are identified because they “belong” to specific entities from
another entity type, known as identifying owner

— for instance, the content of a lecture theatre (white boards, desks, etc.) cannot typically
be identified as such

— the lecture theatre is their identifying owner, so we can talk about “the desk which is in
RB8”
e the relationship type that relates the weak entity to its owner is the weak
entity’s identifying relationship
— In the example above, the is in relationship
e Weak entity types might have a partial key, to distinguish one weak entity
from other weak entities related to the same owner
— for example “the desk 1 (or 2, 3 etc.) which is in RB8”



ER Diagrams
e entity types are represented as boxes

e relationship types are represented as diamonds connected with each
participating entity types

e attributes are shown as ovals connected to the relevant entity or relation
type (key attributes are underlined)

LECTURER

&

DEPARTMENT




e component attributes are connected to the composite attribute
e multivalued attributes are indicated by double ovals

e derived attributes are indicated by dashed lines

o

S | ECTURER




e the cardinality of the relationship is written by the line

e total participation of an entity E in a relationship R is indicated by a
double line between E and R

e role names are attached to relationship connectors

DEPARTMENT

1

COURSE

WORKS FOR

N
N

N TEACHES N

LECTURER

supervisee | STUDENT

. N
SUPEriSor SUPERVISES —



e weak entities are indicated by double boxed rectangles
e identifying relationship types are indicated by double boxed diamonds

e partial keys are indicated with a dashed underline

LECTURE THEATRE
1

DESK @




Example: Books

g

AUTHOR

Y ear of Birth
N

<>

Publication Y ear

N

BOOK

PRIZE

WINS

i



Example: University

COffice DEPARTMENT
COURSE
WORKS FOR

:

LECTURER

earOfBirth

STUDENT

“
| Gurer

i

Matrlculatlon Y ear



Example: Championship

TEAM

1st tea 2nd team
N N
MATCH
N
Date STADIUM




Example: Championship - 2

TEAM

2nd team

STADIUM




